Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immobilization stress induces XBP1 splicing in the mouse brain

Authors: Toru Hosoi; Hitomi Kimura; Yosuke Yamawaki; Kohei Mori; Koichiro Ozawa;

Immobilization stress induces XBP1 splicing in the mouse brain

Abstract

Cells activate the unfolded protein response (UPR) to cope with endoplasmic reticulum (ER) stress. In the present study, we investigated the possible involvement of psychological stress on UPR induction in the mouse brain. When mice were exposed to immobilization stress for 8 h, XBP1 mRNA splicing was significantly induced in the hippocampus, cortex, hypothalamus, cerebellum, and brain stem. On the other hand, we did not observe any increase in XBP1 splicing in the liver, suggesting that this effect is specific to the brain. Stress-induced XBP1 splicing was attenuated 2 days after immobilization stress. We did not observe increases in any other UPR genes, such as CHOP or GRP78, in mouse brains after immobilization stress. These findings indicate an important specific role of XBP1 in response to psychological stress in the mouse brain.

Related Organizations
Keywords

X-Box Binding Protein 1, Immobilization, Mice, RNA Splicing, Unfolded Protein Response, Animals, Brain, Endoplasmic Reticulum Chaperone BiP, Stress, Psychological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!