Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical and Biop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Immediate early gene X-1 interacts with proteins that modulate apoptosis

Authors: Rajiv, Kumar; Ward, Lutz; Elena, Frank; Hee-Jeong, Im;

Immediate early gene X-1 interacts with proteins that modulate apoptosis

Abstract

Immediate early gene X-1 (IEX-1) modulates apoptosis, cellular growth, mechanical strain-induced cardiac hypertrophy, and vascular intimal hyperplasia. To determine how IEX-1 alters apoptosis, we performed yeast two-hybrid studies using IEX-1 as the "bait" protein, and examined interactions between IEX-1 and proteins expressed by a human kidney cDNA expression library. We found that IEX-1 interacts with several proteins of which at least four are known to play a role in the regulation of apoptosis: (1) calcium-modulating cyclophilin ligand; (2) tumor necrosis factor-related apoptosis-inducing ligand (tumor necrosis factor superfamily, member 10); (3) ML-1 myeloid cell leukemia gene encoded protein; and (4) BAT3, a gene present in the major histo-compatibility complex. Our data suggest that IEX-1 may regulate apoptosis by directly interacting with various proteins involved in the control of apoptotic pathways.

Related Organizations
Keywords

Interleukin-17, Membrane Proteins, Proteins, Apoptosis, Kidney, Receptors, Tumor Necrosis Factor, Cell Line, Immediate-Early Proteins, Neoplasm Proteins, Two-Hybrid System Techniques, Protein Interaction Mapping, Humans, Apoptosis Regulatory Proteins, Molecular Chaperones

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%
bronze