
pmid: 14623302
From the most basic of nervous systems to the intricate circuits found within the human brain, a fundamental requirement of neuronal function is that it be malleable, altering its output based upon experience. A host of cellular proteins are recruited for this purpose, which themselves are regulated by protein phosphorylation. Over the past several decades, research has demonstrated that the Ca(2+) and calmodulin-dependent protein phosphatase calcineurin (protein phosphatase 2B) is a critical regulator of a diverse array of proteins, leading to both short- and long-term effects on neuronal excitability and function. This review describes many of the influences of calcineurin on a variety of proteins, including ion channels, neurotransmitter receptors, enzymes, and transcription factors. Intriguingly, due to the bi-directional influences of Ca(2+) and calmodulin on calcineurin activity, the strength and duration of particular stimulations may cause apparently antagonistic functions of calcineurin to work in concert.
Neuronal Plasticity, NFATC Transcription Factors, Calcineurin, Nuclear Proteins, Synaptic Transmission, DNA-Binding Proteins, Gene Expression Regulation, Homeostasis, Calcium Signaling, Cyclic AMP Response Element-Binding Protein, Transcription Factors
Neuronal Plasticity, NFATC Transcription Factors, Calcineurin, Nuclear Proteins, Synaptic Transmission, DNA-Binding Proteins, Gene Expression Regulation, Homeostasis, Calcium Signaling, Cyclic AMP Response Element-Binding Protein, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 151 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
