Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Behavioural Brain Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Behavioural Brain Research
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acetylcholine and attention

Authors: Klinkenberg, I.; Sambeth, A.; Blokland, A.;

Acetylcholine and attention

Abstract

Historically, ACh has been implicated in learning and short-term memory functions. However, more recent studies have provided support for a role of cortical ACh in attentional effort, orienting and the detection of behavioral significant stimuli. The current review article summarizes studies in animals and humans which have investigated the role of ACh in attention and cognition. An attempt has been made to differentiate between brain regions involved in attentional processes versus those important for other cognitive functions. To this purpose, various experimental methods and interventions were used. Animal behavioral studies have injected the selective immunotoxin IgG-saporin to induce specific cholinergic lesions, employed electrochemical techniques such as microdialysis, or have administered cholinergic compounds into discrete parts of the brain. Human studies that give some indication on the link between central cholinergic signaling and cognition are obviously confined to less invasive, imaging methods such as fMRI. The brain areas that are deemed most important for intact attentional processing in both animals and humans appear to be the (pre)frontal, parietal and somatosensory (especially visual) regions, where ACh plays a vital role in the top-down control of attentional orienting and stimulus discrimination. In contrast, cholinergic signaling in the septohippocampal system is suggested to be involved in memory processes. Thus, it appears that the role of ACh in cognition is different per brain region and between nicotinic versus muscarinic receptor subtypes.

Related Organizations
Keywords

Cerebral Cortex, Brain Mapping, Models, Neurological, Cholinergic Agents, Brain, Acetylcholine, Cognition, Cholinergic Fibers, Memory, Animals, Humans, Attention

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    284
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
284
Top 1%
Top 10%
Top 1%
hybrid