Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel insights into noncanonical open reading frames in cancer

Authors: Yihan, Liu; Shan, Zeng; Minghua, Wu;

Novel insights into noncanonical open reading frames in cancer

Abstract

With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.

Related Organizations
Keywords

Open Reading Frames, Neoplasms, Computational Biology, Humans, RNA, Peptides, Ribosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
hybrid