<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17010304
Drug resistance, an all too frequent characteristic of cancer, represents a serious barrier to successful treatment. Although many resistance mechanisms have been described, those that involve membrane-resident proteins belonging to the ABC (ATP binding cassette) transporter superfamily are of particular interest. In addition to cancer, the ABC transporter proteins are active in diseases such as malaria and leishmaniasis. A recent renaissance in lipid metabolism, specifically ceramide and sphingolipids, has fueled research and provided insight into the role of glycosphingolipids in multidrug resistance. This article reviews current knowledge on ceramide, glucosylceramide synthase and cerebrosides, and the relationship of these lipids to cellular response to anticancer agents.
Biophysics, Drug Resistance, Cell Biology, Multidrug resistance, P-glycoprotein, Biochemistry, Lipids, Glycosphingolipids, Neoplasms, Animals, Humans, ATP-Binding Cassette Transporters, Glucosylceramide synthase
Biophysics, Drug Resistance, Cell Biology, Multidrug resistance, P-glycoprotein, Biochemistry, Lipids, Glycosphingolipids, Neoplasms, Animals, Humans, ATP-Binding Cassette Transporters, Glucosylceramide synthase
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 105 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |