
pmid: 28578911
Extracellular vesicles (EVs) have emerged as pivotal mediators of intercellular communications in local and distant microenvironments under patho/physiological conditions. EVs contain bioactive materials such as proteins, RNA transcripts, microRNAs and even DNAs, and recent work on their protein profiles has revealed the existence of metalloproteinases including the cell surface-anchored sheddases ADAMs (a disintegrin and metalloproteinases) and soluble ADAMTSs (ADAMs with thrombospondin motifs) as well as cell surface-bound and soluble MMPs (matrix metalloproteinases) from various cell types and body fluids. EV-associated metalloproteinases can alter the make-up of EVs by ectodomain shedding, exert a shedding activity after being taken up by target cells, or directly contribute to degradation of extracellular matrix surrounding cells. In addition, metalloproteinase-loaded EV cargoes sometimes stimulate critical signaling pathways, actively participating in tumor progression. This review focuses on recent findings and knowledge about metalloproteinases in EV biology, and we discuss their potential involvement in human diseases, highlighting the context of tumor cells and their microenvironment. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Extracellular Matrix, Neoplasm Proteins, ADAMTS Proteins, Protein Domains, Cell-Derived Microparticles, Neoplasms, Proteolysis, Tumor Microenvironment, Animals, Humans, Signal Transduction
Extracellular Matrix, Neoplasm Proteins, ADAMTS Proteins, Protein Domains, Cell-Derived Microparticles, Neoplasms, Proteolysis, Tumor Microenvironment, Animals, Humans, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 148 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
