Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Downregulation of Ezh2 methyltransferase by FOXP3: New insight of FOXP3 into chromatin remodeling?

Authors: Xiaojun Yang; Xiaojun Yang; Yun Zhao; Xichuan Yang; Ya Xiong; Eric Pier; Xia Zhang; +3 Authors

Downregulation of Ezh2 methyltransferase by FOXP3: New insight of FOXP3 into chromatin remodeling?

Abstract

Transcription factor FOXP3 (forkhead box P3) is found initially as a key regulator in regulatory T cells. Recently its expression has been demonstrated in some non-lymphoid normal and cancerous cells. Now FOXP3 has been proven to regulate cancer-related genes, especially suppressor genes in breast cancer. But the mechanisms by which FOXP3 regulates suppressor genes are not fully determined. In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer. The overexpression of FOXP3 weakened Ezh2's enhancement on the mammosphere formation, cell proliferation, directional migration, and colony forming ability of T47D cells. We demonstrated that FOXP3 could downregulate Ezh2 protein level and this depended on not only the FOXP3 expression amount, but also the nuclear localization of FOXP3. More importantly, we demonstrated FOXP3 accelerated Ezh2 protein degradation through the polyubiquitination-proteasome pathway by enhancing the transcription of E3 ligase Praja1 directly. These results provided a new mechanism for FOXP3 in histone modifications as an Ezh2 suppressor and supported new evidence for FOXP3 as a tumor suppressor in breast cancer.

Related Organizations
Keywords

Epigenomics, FOXP3, Blotting, Western, Fluorescent Antibody Technique, Breast Neoplasms, Praja1, Colony-Forming Units Assay, Immunoenzyme Techniques, Cell Movement, Animals, Humans, Immunoprecipitation, Enhancer of Zeste Homolog 2 Protein, Ezh2, Molecular Biology, Lung, Cells, Cultured, Cell Proliferation, Ubiquitination, Forkhead Transcription Factors, Cell Biology, Fibroblasts, Chromatin Assembly and Disassembly, Gene Expression Regulation, Neoplastic, Animals, Newborn, Female, Transcription

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Average
hybrid