Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidad de Chile...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Epitranscriptomic regulation of viral replication

Authors: Pereira-Montecinos, Camila; Valiente-Echeverría, Fernando; Soto Rifo, Ricardo;

Epitranscriptomic regulation of viral replication

Abstract

RNA plays central roles in biology and novel functions and regulation mechanisms are constantly emerging. To accomplish some of their functions within the cell, RNA molecules undergo hundreds of chemical modifications from which N6-methyladenosine (m6A), inosine (I), pseudouridine (ψ) and 5-methylcytosine (5mC) have been described in eukaryotic mRNA. Interestingly, the m6A modification was shown to be reversible, adding novel layers of regulation of gene expression through what is now recognized as epitranscriptomics. The development of molecular mapping strategies coupled to next generation sequencing allowed the identification of thousand of modified transcripts in different tissues and under different physiological conditions such as viral infections. As intracellular parasites, viruses are confronted to cellular RNA modifying enzymes and, as a consequence, viral RNA can be chemically modified at some stages of the replication cycle. This review focuses on the chemical modifications of viral RNA and the impact that these modifications have on viral gene expression and the output of infection. A special emphasis is given to m6A, which was recently shown to play important yet controversial roles in different steps of the HIV-1, HCV and ZIKV replication cycles.

Related Organizations
Keywords

Models, Genetic, m6A, Virus Replication, Epigenesis, Genetic, HCV, HIV-1, Viral replication, Animals, Humans, Gene expression, RNA Editing, Transcriptome, Epitranscriptomics, ZIKV

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Green