Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Myc and mRNA capping

Authors: Dunn, Sianadh; Cowling, Victoria H.;
Abstract

c-Myc is upregulated in response to growth factors and transmits the signal to proliferate by altering the gene expression landscape. When genetic alterations result in growth factor-independent c-Myc expression, it can become an oncogene. The majority of human tumour types exhibit a degree of c-Myc deregulation, resulting in unrestrained cell proliferation. c-Myc binds proximal to the promoter region of genes and recruits co-factors including histone acetyltransferases and RNA pol II kinases, which promote transcription. c-Myc also promotes formation of the cap structure at the 5' end of mRNA. The cap is 7-methylguanosine linked to the first transcribed nucleotide of RNA pol II transcripts via a 5' to 5' triphosphate bridge. The cap is added to the first transcribed nucleotide by the capping enzymes, RNGTT and RNMT-RAM. During the early stages of transcription, the capping enzymes are recruited to RNA pol II phosphorylated on Serine-5 of the C-terminal domain. The mRNA cap protects transcripts from degradation during transcription and recruits factors which promote RNA processing including, splicing, export and translation initiation. The proportion of transcripts with a cap structure is increased by elevating c-Myc expression, resulting in increased rates of translation. c-Myc promotes capping by promoting RNA pol II phosphorylation and by upregulating the enzyme SAHH which neutralises the inhibitory bi-product of methylation reactions, SAH. c-Myc-induced capping is required for c-Myc-dependent gene expression and cell proliferation. Targeting capping may represent a new therapeutic opportunity to inhibit c-Myc function in tumours. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.

Country
United Kingdom
Keywords

570, Capping, mRNA, Biophysics, 610, Biochemistry, Article, Proto-Oncogene Proteins c-myc, 7-methylguanosine, Structural Biology, Neoplasms, Genetics, Humans, RNA, Messenger, Molecular Biology, Cell Proliferation, Guanosine, Gene Expression Regulation, Neoplastic, c-Myc, Protein Biosynthesis, RNA Polymerase II, Transcription

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Green
hybrid