
The second messenger cAMP is integral for many physiological processes. Soluble adenylyl cyclase (sAC) was recently identified as a widely expressed intracellular source of cAMP in mammalian cells. sAC is evolutionary, structurally, and biochemically distinct from the G-protein-responsive transmembranous adenylyl cyclases (tmAC). The structure of the catalytic unit of sAC is similar to tmAC, but sAC does not contain transmembranous domains, allowing localizations independent of the membranous compartment. sAC activity is stimulated by HCO(3)(-), Ca²⁺ and is sensitive to physiologically relevant ATP fluctuations. sAC functions as a physiological sensor for carbon dioxide and bicarbonate, and therefore indirectly for pH. Here we review the physiological role of sAC in different human tissues with a major focus on the lung. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease, guest edited by J. Buck and L.R. Levin.
Protein Conformation, sAC, Soluble adenylyl cyclase, Cell Compartmentation, Bicarbonate, cAMP, Airways, Molecular Medicine, Animals, Humans, Lung, Molecular Biology, Adenylyl Cyclases
Protein Conformation, sAC, Soluble adenylyl cyclase, Cell Compartmentation, Bicarbonate, cAMP, Airways, Molecular Medicine, Animals, Humans, Lung, Molecular Biology, Adenylyl Cyclases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
