Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astroparticle Physics
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2005
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Astroparticle Physics
Other literature type
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Baryon oscillations

Authors: Martin White;

Baryon oscillations

Abstract

The coupling of photons and baryons by Thomson scattering in the early universe imprints features in both the Cosmic Microwave Background (CMB) and matter power spectra. The former have been used to constrain a host of cosmological parameters, the latter have the potential to strongly constrain the expansion history of the universe and dark energy. Key to this program is the means to localize the primordial features in observations of galaxy spectra which necessarily involve galaxy bias, non-linear evolution and redshift space distortions. We present calculations, based on mock catalogues produced from particle-mesh simulations, which show the range of behaviors we might expect of galaxies in the real universe. We find that non-linearity, galaxy bias and redshift space distortions all introduce important modifications to the basic picture. Both the galaxy bias and the (isotropic) redshift space distortions lead to relatively smooth modulations in power on the scales of interest to baryon oscillations. The halo and galaxy power spectra exhibit low order structure beyond the acoustic oscillations over the range of scales of relevance. Fitting a cubic polynomial to the ratio of galaxy to dark matter power reduces any remaining structure in the range 0.03

18 pages, 10 figures. Minor changes to match version accepted by Astroparticle Physics

Related Organizations
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 1%
Green