Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advances in Space Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Space Research
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microbial life in permafrost

Authors: V. A. Shcherbakova; John J. McGrath; David Gilichinsky; Elizaveta Rivkina; James M. Tiedje; K. Laurinavichius;

Microbial life in permafrost

Abstract

Hydrogenotrophic and acetoclastic methanogenesis was measured at temperatures between 5 and -16.5 degrees C with H14CO3- and 14CH3CO2- as substrates in Siberian permafrost soils. The rate of methane formation was reduced approximately 2-fold over the temperature range from 5 to -1.8 degrees C. For the most active sample "a" temperature dependence of CH4, production at negative temperatures was approximately a 100-fold reduction for a range of -1.8 to -16.5 degrees C for both substrates. According to the Arrhenius equation, the activation energy of methane generation from bicarbonate and acetate for the temperature interval -5 to -16.5 degrees C was reduced by a factor of 3 and 1.5, respectively, in comparison with the temperatures above zero. In the experiments we tested the geological time series, showing the ability of microorganisms to carry out redox reactions after thousands to millions years of existence in permafrost. From the Climate Change point of view, it is important that the recovered organisms are quickly involved anew in present-day ecological processes after instances of permafrost thawing, and may be vital in nutrient recycling and in the production and consumption of greenhouse gases over a large portion of the Earth's surface. From an exobiological point of view, the terrestrial permafrost, inhabited by cold adapted microbes and protecting the cells against unfavorable conditions, can be considered as an extraterrestrial model. The methanogenic bacteria and their metabolic end-products found in the Earth's permafrost provide a range of analogues that could be used in the search for possible ecosystems and potential inhabitants on extraterrestrial cryogenic bodies free of oxygen.

Keywords

Cryopreservation, Geologic Sediments, Bacteria, Extraterrestrial Environment, Arctic Regions, Temperature, Acetates, Cold Climate, Siberia, Bicarbonates, Exobiology, Environmental Microbiology, Methane, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!