Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Artificial Intellige...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Artificial Intelligence
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Artificial Intelligence
Article . 2008
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Artificial Intelligence
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expressive probabilistic description logics

Authors: Lukasiewicz, T;

Expressive probabilistic description logics

Abstract

AbstractThe work in this paper is directed towards sophisticated formalisms for reasoning under probabilistic uncertainty in ontologies in the Semantic Web. Ontologies play a central role in the development of the Semantic Web, since they provide a precise definition of shared terms in web resources. They are expressed in the standardized web ontology language OWL, which consists of the three increasingly expressive sublanguages OWL Lite, OWL DL, and OWL Full. The sublanguages OWL Lite and OWL DL have a formal semantics and a reasoning support through a mapping to the expressive description logics SHIF(D) and SHOIN(D), respectively. In this paper, we present the expressive probabilistic description logics P-SHIF(D) and P-SHOIN(D), which are probabilistic extensions of these description logics. They allow for expressing rich terminological probabilistic knowledge about concepts and roles as well as assertional probabilistic knowledge about instances of concepts and roles. They are semantically based on the notion of probabilistic lexicographic entailment from probabilistic default reasoning, which naturally interprets this terminological and assertional probabilistic knowledge as knowledge about random and concrete instances, respectively. As an important additional feature, they also allow for expressing terminological default knowledge, which is semantically interpreted as in Lehmann's lexicographic entailment in default reasoning from conditional knowledge bases. Another important feature of this extension of SHIF(D) and SHOIN(D) by probabilistic uncertainty is that it can be applied to other classical description logics as well. We then present sound and complete algorithms for the main reasoning problems in the new probabilistic description logics, which are based on reductions to reasoning in their classical counterparts, and to solving linear optimization problems. In particular, this shows the important result that reasoning in the new probabilistic description logics is decidable/computable. Furthermore, we also analyze the computational complexity of the main reasoning problems in the new probabilistic description logics in the general as well as restricted cases.

Keywords

Probabilistic description logics, Conditional knowledge bases, Probabilistic default reasoning, Artificial Intelligence, Uncertainty reasoning for the Semantic Web, Complexity, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    154
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
154
Top 10%
Top 1%
Top 1%
Green
hybrid