Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Arthroplasty
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Orthopaedic Research®
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diagnosis of Periprosthetic Joint Infection

Authors: B. Zmistowski; C. Della Valle; T. W. Bauer; K. N. Malizos; A. Alavi; H. Bedair; R. E. Booth; +23 Authors

Diagnosis of Periprosthetic Joint Infection

Abstract

Diagnosis of periprosthetic joint infection (PJI), one of the major causes of failure of total joint arthroplasty, continues to pose a challenge. One of the major reasons is the lack of a ''gold standard'' to distinguish between septic and aseptic failure. Isolation of an infecting organism in otherwise confirmed PJI also may be challenging as organisms usually reside as a biofilm on the surface of the implant. This limitation can be overcome by using nonculture diagnostic tests, including inflammatory serologies, joint aspiration with fluid cell count analysis, and tissue biopsy. Imaging tests are limited in their ability to differentiate septic from aseptic joints and also are limited by cost. While radionuclide imaging modalities have yielded improved results, low accuracy for diagnosis of PJI remains. In recent years there have been some advances in diagnosis of PJI, including creation of evidence based guidelines, creation of a consensus definition of PJI, and emergence of new diagnostic tests and improved understanding of current tests. This review article will highlight some of these advances.

Related Organizations
Keywords

Microbiological Techniques, Arthritis, Infectious, Hematologic Tests, Prosthesis-Related Infections, Algorithms; Anti-Bacterial Agents; Humans; Microbiological Techniques; Predictive Value of Tests; Prosthesis-Related Infections, Anti-Bacterial Agents, Specimen Handling, C-Reactive Protein, Predictive Value of Tests, Chronic Disease, Synovial Fluid, Humans, Arthroplasty, Replacement, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    252
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
252
Top 1%
Top 1%
Top 1%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!