Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Powder Tech...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Powder Technology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Silica coated hard-magnetic strontium hexaferrite nanoparticles

Authors: Evgeny O. Anokhin; Lev A. Trusov; Daniil A. Kozlov; Ratibor G. Chumakov; Anastasia E. Sleptsova; Oleg V. Uvarov; Makarii I. Kozlov; +3 Authors

Silica coated hard-magnetic strontium hexaferrite nanoparticles

Abstract

Abstract Stable colloids of hard magnetic particles are newly developed and very promising materials. Surface functionalization of these particles remains challenging because the particles tend to aggregate during reaction due to strong magnetic interactions. Herein we report on a synthesis of strontium hexaferrite hard magnetic nanoparticles coated with silica by hydrolysis of tetraethoxysilane. As a source of hexaferrite we used stable colloid of plate-like nanoparticles with mean diameter of 40 nm and thickness of 5 nm, which were prepared by a glass-ceramic process. We have shown that to successfully coat each hexaferrite particle individually the hydrolysis conditions should provide heterogeneous nucleation of silica with rate higher than the aggregation rate of the colloidal nanoparticles. The resulting materials represent single crystal hexaferrite cores wrapped in silica shell with mean thickness of 18 and 23 nm depending on synthesis conditions. The obtained core-shell particles can be easily dispersed as stable aqueous colloids. The materials can be used as magnetic sorbents or nanocontainers and, furthermore, they are very promising colloidal building blocks for various magnetically assembled nanostructures.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!