
Abstract Doping CeO2 cubic fluorite with transitional metal ions can effectively improve its redox behavior, oxygen storage capacity and catalytic performance, but the relevant fundamental understanding of the promotion effect is still insufficient due to the difficulty on determining the distribution of dopant. We herein demonstrate an effective approach to determine this dopant distribution by combining X-ray absorption spectroscopy and selective chemisorption. Cubic CexFe1-xO2 fluorite solid solutions (x ≥ 0.70) were prepared by co-precipitation method. With the increasing of Fe molar ratio in CexFe1-xO2, Fe3+ initially substitutes Ce4+ and/or occupy intersitial sites with x ≥ 0.80, and then transfers to form sub-Fe2O3 structure in fluorite lattice as more Fe3+ are present; meanwhile, the Fe3+ doping initially occurs only in the bulk with x ≥ 0.96 and then extends to the surface with 0.87 ≤ x
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
