<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this work, the interior spacetime of stars is built in a Lorentz symmetry breaking model called bumblebee gravity. Firstly, we calculated the modified Tolman-Oppenheimer-Volkoff equation in this context of modified gravity. Then we show that the bumblebee field, responsible for the symmetry breaking, increases the star mass-radius relation when it assumes its vacuum expectation value. When compared to the general relativity mass-radius relation, a Lorentz symmetry breaking context, like the bumblebee gravity, could provide more massive stars, surpassing the $2.5 M_{\odot}$ limit as the interior of the star is described by quark matter with the MIT bag model. Also, we investigate the stability of the solution with the MIT bag equation of state in this context of modified gravity.
13 pages, 5 figures and 1 table. V3 with stability analysis section. Published in Annals of Physics
High Energy Physics - Theory, Nuclear Theory (nucl-th), Nuclear Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
High Energy Physics - Theory, Nuclear Theory (nucl-th), Nuclear Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |