Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Antiviral Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Antiviral Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Antiviral Research
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Binding of fusion protein FLSC IgG1 to CCR5 is enhanced by CCR5 antagonist Maraviroc

Authors: Olga Latinovic; Kate Schneider; Henryk Szmacinski; Joseph R. Lakowicz; Alonso Heredia; Robert R. Redfield;

Binding of fusion protein FLSC IgG1 to CCR5 is enhanced by CCR5 antagonist Maraviroc

Abstract

The CCR5 chemokine receptor is crucial for human immunodeficiency virus type 1 (HIV-1) infection, acting as the principal coreceptor for HIV-1 entry and transmission and is thus an attractive target for antiviral therapy. Studies have suggested that CCR5 surface density and its conformational changes subsequent to virion engagement are rate limiting for entry, and consequently, infection. Not all CCR5 antibodies inhibit HIV-1 infection, suggesting a need for more potent reagents. Here we evaluated full length single chain (FLSC) IgG1, a novel IgG-CD4-gp120(BAL) fusion protein with several characteristics that make it an attractive candidate for treatment of HIV-1 infections, including bivalency and a potentially increased serum half-life over FLSC, the parental molecule. FLSC IgG1 binds two domains on CCR5, the N-terminus and the second extracellular loop, lowering the levels of available CCR5 viral attachment sites. Furthermore, FLSC IgG1 synergizes with Maraviroc (MVC), the only licensed CCR5 antagonist. In this study, we used both microscopy and functional assays to address the mechanistic aspects of the interactions of FLSC IgG1 and MVC in the context of CCR5 conformational changes and viral infection. We used a novel stochastic optical reconstruction microscopy (STORM), based on high resolution localization of photoswitchable dyes to visualize direct contacts between FLSC IgG1 and CCR5. We compared viral entry inhibition by FLSC IgG1 with that of other CCR5 blockers and showed FLSC IgG1 to be the most potent. We also showed that lower CCR5 surface densities in HIV-1 infected primary cells result in lower FLSC IgG1 EC50 values. In addition, CCR5 binding by FLSC IgG1, but not CCR5 Ab 2D7, was significantly increased when cells were treated with MVC, suggesting MVC allosterically increases exposure of the FLSC IgG1 binding site. These data have implications for future antiviral therapy development.

Keywords

Microscopy, Confocal, Receptors, CCR5, Recombinant Fusion Proteins, HIV Antibodies, HIV Envelope Protein gp120, Triazoles, Virus Internalization, Cell Line, Maraviroc, Cyclohexanes, Immunoglobulin G, CD4 Antigens, HIV-1, Humans, Protein Binding, Single-Chain Antibodies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
bronze