Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCrea
Article . 2019
License: CC BY NC ND
Data sources: UCrea
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Mathematics and Computation
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2019
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
http://dx.doi.org/10.1016/j.am...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novelty search for global optimization

Authors: Iztok Fister 0001; Andrés Iglesias 0001; Akemi Gálvez; Javier Del Ser; Eneko Osaba; Iztok Fister Jr.; Matjaz Perc; +1 Authors

Novelty search for global optimization

Abstract

Novelty search is a tool in evolutionary and swarm robotics for maintaining the diversity of population needed for continuous robotic operation. It enables nature-inspired algorithms to evaluate solutions on the basis of the distance to their k-nearest neighbors in the search space. Besides this, the fitness function represents an additional measure for evaluating the solution, with the purpose of preserving the so-named novelty solutions into the next generation. In this study, a differential evolution was hybridized with novelty search. The differential evolution is a well-known algorithm for global optimization, which is applied to improve the results obtained by the other solvers on the CEC-14 benchmark function suite. Furthermore, functions of different dimensions were taken into consideration, and the influence of the various novelty search parameters was analyzed. The results of experiments show a great potential for using novelty search in global optimization.

Iztok Fister acknowledges financial support from the Slovenian Research Agency (Grant no. P2-0041). Iztok Fister Jr. acknowledges financial support from the Slovenian Research Agency (Grant no. P2-0057). Matjaž Perc acknowledges financial support from the Slovenian Research Agency (Grant nos. J1-7009, J4-9302, J1-9112 and P5-0027). Andres Iglesias and Akemi Galvez acknowledge financial support from the projects TIN2017-89275-R (AEI/FEDER, UE) and PDE-GIR (H2020, MSCA program, ref. 778035). Eneko Osaba and Javier Del Ser would like to thank the Basque Government for its funding support through the EMAITEK program.

Country
Spain
Keywords

differential evolution, swarm intelligence, Swarm intelligence, novelty search, Approximation methods and heuristics in mathematical programming, Nonconvex programming, global optimization, Artificial life, Novelty search, Evolutionary robotics, artificial life, Differential evolution, evolutionary robotics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 52
    download downloads 24
  • 52
    views
    24
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
36
Top 10%
Top 10%
Top 10%
52
24
Green