
pmid: 25980936
Duchenne muscular dystrophy (DMD) is caused mostly by internal deletions in the gene for dystrophin, a protein essential for maintaining muscle cell membrane integrity. These deletions abrogate the reading frame and the lack of dystrophin results in progressive muscle deterioration. DMD patients experience progressive loss of ambulation, followed by a need for assisted ventilation, and eventual death in mid-twenties. By the method of exon skipping in dystrophin pre-mRNA the reading frame is restored and the internally deleted but functional dystrophin is produced. Two oligonucleotide drugs that induce desired exon skipping are currently in advanced clinical trials.
RNA Splicing, Oligonucleotides, Exons, Morpholinos, Dystrophin, Muscular Dystrophy, Duchenne, Mutation, Animals, Humans, Randomized Controlled Trials as Topic
RNA Splicing, Oligonucleotides, Exons, Morpholinos, Dystrophin, Muscular Dystrophy, Duchenne, Mutation, Animals, Humans, Randomized Controlled Trials as Topic
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 158 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
