
Cell phenotype alteration by cell-derived vesicles presents a new aspect for consideration of cell fate. Accumulating data indicates that vesicles from many cells interact with or enter different target cells from other tissues, altering their phenotype toward that of the cell releasing the vesicles. Cells may be changed by direct interactions, transfer of cell surface receptors or epigenetic reprogramming via transcriptional regulators. Induced epigenetic changes appear to be stable and result in significant functional effects. These data force a reconsideration of the cellular context in which transcription regulates the proliferative and differentiative fate of tissues and suggests a highly plastic cellular system, which might underlay a relatively stable tissue system. The capacity of marrow to convert to non-hematopoietic cells related to vesicle cross-communication may underlie the phenomena of stem cell plasticity. Additionally, vesicles have promise in the clinical arenas of disease biomarkers, tissue restoration and control of neoplastic cell growth.
Epigenomics, Stem Cells, Cell Cycle, Cytoplasmic Vesicles, Bone Marrow Cells, Cell Differentiation, Cell Communication, Exosomes, Hematopoietic Stem Cells, Cell Fusion, Phenotype, Gene Expression Regulation, Cell-Derived Microparticles, Humans
Epigenomics, Stem Cells, Cell Cycle, Cytoplasmic Vesicles, Bone Marrow Cells, Cell Differentiation, Cell Communication, Exosomes, Hematopoietic Stem Cells, Cell Fusion, Phenotype, Gene Expression Regulation, Cell-Derived Microparticles, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 104 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
