Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Materialiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Materialia
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Materialia
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the ultimate tensile strength of tantalum

Authors: Eric N. Hahn; Timothy C. Germann; Ramon Ravelo; James E. Hammerberg; Marc A. Meyers;

On the ultimate tensile strength of tantalum

Abstract

Abstract Strain rate, temperature, and microstructure play a significant role in the mechanical response of materials. Using non-equilibrium molecular dynamics simulations, we characterize the ductile tensile failure of a model body-centered cubic metal, tantalum, over six orders of magnitude in strain rate. Molecular dynamics calculations combined with reported experimental measurements show power-law kinetic relationships that vary as a function of dominant defect mechanism and grain size. The maximum sustained tensile stress, or spall strength, increases with increasing strain rate, before ultimately saturating at ultra-high strain rates, i.e. those approaching or exceeding the Debye frequency. The upper limit of tensile strength can be well estimated by the cohesive energy, or the energy required to separate atoms from one another. At strain rates below the Debye frequency, the spall strength of nanocrystalline Ta is less than single crystalline tantalum. This occurs in part due to the decreased flow stress of the grain boundaries; stress concentrations at grain boundaries that arise due to compatibility requirements; and the growing fraction of grain-boundary atoms as grain size is decreased into the nanocrystalline regime. In the present cases, voids nucleate at defect structures present in the microstructure. The exact makeup and distribution of defects is controlled by the initial microstructure and the plastic deformation during both compression and expansion, where grain boundaries and grain orientation play critical roles.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 1%
Top 10%
Top 10%
hybrid