Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Astronauticaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Astronautica
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decentralized autonomous planning of cluster reconfiguration for fractionated spacecraft

Authors: Jing Chu; Jian Guo; Eberhard Gill;

Decentralized autonomous planning of cluster reconfiguration for fractionated spacecraft

Abstract

Abstract Autonomous cluster operation such as cluster reconfiguration is one of the enabling technologies for fractionated spacecraft. By virtue of the multi-agent system theory, this paper presents an organizational architecture for fractionated spacecraft, which not only enables autonomous cluster operations but also facilitates its non-traditional attributes. Within this organizational architecture, a decentralized framework is proposed to solve cluster reconfiguration problems based on primal and dual decomposition, where subgradient methods are adopted to include reconfiguration cases with non-differentiable objectives. Two typical constraints are considered: final configuration constraints representing coupling variables and collision avoidance constraints representing coupling constraints, both of which are non-convex. General schemes are proposed to convexify those constraints via the linearization and convex restriction technology. Then final configuration constraints are tackled by primal decomposition, while collision avoidance constraints by dual decomposition. To the end, multi-level primal and dual decompositions are employed to solve reconfiguration problems with both coupling variables and coupling constraints. For illustration an example of in-plane cluster reconfiguration is solved and compared with the centralized approach the solution is optimal.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!