Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytica Chimica Acta
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aerosol sampler for analysis of fine and ultrafine aerosols

Authors: Pavel Mikuška; Lukáš Čapka; Zbyněk Večeřa;

Aerosol sampler for analysis of fine and ultrafine aerosols

Abstract

A new aerosol sampler based on the original version of Aerosol Counterflow Two-Jets Unit (ACTJU) is described. The ACTJU collector, connected with a water-based Condensation Growth Unit (CGU) placed upstream of the ACTJU, accomplished the quantitative collection of fine and ultrafine aerosol particles down to a few nanometers in diameter. Condensation of water vapor in the CGU enlarges nanometer sized particles to larger sizes in the supermicrometer range and the formed droplets are then collected into water in the ACTJU collector. The continuous collection of aerosols with the CGU-ACTJU sampler allows for the time-resolved measurement of changes in the concentration of particulate constituents. Coupling of the CGU-ACTJU sampler with on-line detection devices allows in-situ automated analysis of water-soluble aerosol components with high time resolution of 1 s (e.g., FIA detection for nitrite or nitrate) or 1 h (e.g., IC detection with preconcentration step for inorganic anions). Under the optimum conditions (the air flow rate of 10 L min-1 and water flow rate of 1.5 mL min-1), the limit of detection (IC including the preconcentration) for particulate fluoride, chloride, nitrite, nitrate, sulphate and phosphate is 2.53, 6.64, 24.2, 16.8, 0.12 and 5.03 ng m-3, respectively. The apparatus is sufficiently robust for its application at routine monitoring of aerosol composition in real-time.

Related Organizations
Keywords

aerosol collection, atmospheric aerosols, chemical composition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!