Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout

Authors: Maryam, Jamil; Sana, Zafar; Tehmina, Bibi; Parveen Akhtar, Buttar; Bushra, Shal; Kifayatullah, Shah; Fakhar Ud, Din; +2 Authors

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout

Abstract

The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)-induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques. This methodology highlighted the efficacy of KA in acute gout attacks offering new approach for gout management.In-vivo model of acute gout was established in BALB/c mice. Anti-inflammatory and urate-lowering potential was determined through pain behavioral evaluation, biochemical analysis, histological and immunohistochemical assays, radiological assessments, Fourier Transform Infrared (FTIR) analysis, and computational analysis.The paw edema, joint thickness, and the frequency and duration of acute gout flare-ups were all significantly (p < 0.001) decreased by the administration of KA. A considerable reversal of inflammation and deterioration was observed in the KA-treated groups in X-ray examination. The FTIR spectroscopy indicated the changes in the molecular makeup of tissues, and modifications of biomolecules including proteins, lipids, and carbohydrates. Histopathological changes showed marked (p < 0.001) improvements in cellular structure of the paw, and inflammatory cell infiltration in the treatment groups. Trichrome staining revealed suppressed collagen deposition, inflammation, and tissue repair in the paw. In paw tissues, the KA therapy up-regulated IκB-α expression while down-regulating toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression. On the other hand, KA therapy greatly increased antioxidants and decreased oxidative stress indicators significantly (p < 0.001). According to Evans's blue permeability analysis, results showed that the treatment groups' vascular permeability was intensely reduced in comparison to the diseased group. Molecular docking studies indicated that KA appeared to have a high tendency to bind to protein targets. KA was associated with the drop in the cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β).In conclusion, this study highlighted the potential therapeutic effect of KA in alleviating MSU-induced gout by suppressing the NF-κB signaling pathway. The anti-inflammatory and antioxidant activity was demonstrated by behavioral studies and advanced biochemical evaluations including blood analysis and oxido-nitrosative stress markers. Histopathological analysis, including H&E staining, immunohistochemistry, and Masson Trichrome staining, revealed tissue preservation, while FTIR and X-ray revealed structural improvements. Molecular docking verified strong binding affinity to NF-κB-related targets, verifying its mechanistic action. These findings suggest promising applications of KA in acute gout management due to its potent NF-κB modulating activity.

Keywords

Male, Mice, Inbred BALB C, Gout, NF-kappa B, Anti-Inflammatory Agents, Uric Acid, Toll-Like Receptor 4, Molecular Docking Simulation, Mice, Disease Models, Animal, Oxidative Stress, Acute Disease, Animals, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!