Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling of the [E43S]SNase-ssDNA–Cd2+ complex: Structural insight into the action of nuclease on ssDNA

Authors: Tao, Xie; Yingang, Feng; Lu, Shan; Jinfeng, Wang;

Modeling of the [E43S]SNase-ssDNA–Cd2+ complex: Structural insight into the action of nuclease on ssDNA

Abstract

Staphylococcal nuclease (SNase) catalyzes the hydrolysis of the phosphate backbone of DNA and RNA leaving 3'-phosphate mononucleotides and dinucleotides. SNase has been extensively used as a model protein for investigating enzymatic mechanism, thermodynamic stability, and protein folding. An unanswered question regarding enzymatic structure-function relationship is how SNase is capable of binding DNA and catalyzing the DNA hydrolysis. For understanding the mechanism of SNase-DNA interaction at the structural level, we have investigated the interactions between the E43S-mutant SNase ([E43S]SNase) and ssDNA in the presence of Cd(2+) using various NMR techniques including pulsed field gradient diffusion measurement, NMR titration and affinity measurement, chemical shift mapping, backbone dynamics, and three dimensional structural determination. [E43S]SNase retains the similar DNA-binding ability to the native SNase but loses its catalytic activity, and binding of ssDNA/Cd(2+) to [E43S]SNase induced certain degree backbone conformational exchange motion in the ssDNA and Cd(2+) binding regions, which might account for the preferential binding of DNA. Based on the NMR-derived structure of ssDNA/Cd(2+)-bound [E43S]SNase, we have built a three-dimensional model of the [E43S]SNase-ssDNA-Cd(2+) complex. The resulting model enabled the functional roles of SNase to be discussed, in particular the action of nuclease on ssDNA.

Related Organizations
Keywords

DNA, Bacterial, Models, Molecular, Staphylococcus aureus, Binding Sites, Protein Conformation, Hydrolysis, Mutagenesis, Site-Directed, Micrococcal Nuclease, Point Mutation, Nuclear Magnetic Resonance, Biomolecular, Cadmium

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!