Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytical Biochemis...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical Biochemistry
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fingerprinting of single viral genomes

Authors: Matthew M, Ferris; Thomas M, Yoshida; Babetta L, Marrone; Richard A, Keller;

Fingerprinting of single viral genomes

Abstract

We demonstrate the use of technology developed for optical mapping to acquire DNA fingerprints from single genomes for the purpose of discrimination and identification of bacteria and viruses. Single genome fingerprinting (SGF) provides not only the size but also the order of the restriction fragments, which adds another dimension to the information that can be used for discrimination. Analysis of single organisms may eliminate the need to culture cells and thereby significantly reduce analysis time. In addition, samples containing mixtures of several organisms can be analyzed. For analysis, cells are embedded in an agarose matrix, lysed, and processed to yield intact DNA. The DNA is then deposited on a derivatized glass substrate. The elongated genome is digested with a restriction enzyme and stained with the intercalating dye YOYO-1. DNA is then quantitatively imaged with a fluorescence microscope and the fragments are sized to an accuracy >or=90% by their fluorescence intensity and contour length. Single genome fingerprints were obtained from pure samples of adenovirus, from bacteriophages lambda and T4 GT7, and from a mixture of the three viral genomes. SGF will enable the fingerprinting of uncultured and unamplified samples and allow rapid identification of microorganisms with applications in forensics, medicine, public health, and environmental microbiology.

Related Organizations
Keywords

Calibration, DNA, Viral, Genome, Viral, Particle Size, DNA Fingerprinting, Fluorescence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!