
pmid: 15113686
The objective of this study was to develop a sensitive and miniaturized immunoassay by coupling a microbead-based immunoassay with an interdigitated array (IDA) electrode. An IDA electrode amplifies the signal by recycling an electrochemically redox-reversible molecule. The microfabricated platinum electrodes had 25 pairs of electrodes with 1.6-microm gaps and 2.4-microm widths. An enzyme-labeled sandwich immunoassay on paramagnetic microbeads with mouse IgG as the analyte and beta-galactosidase as the enzyme label was used as the model system. beta-Galactosidase converted p-aminophenyl beta-D-galactopyranoside to p-aminophenol (PAP). This enzyme reaction was measured continuously by positioning the microbeads near the electrode surface with a magnet. Electrochemical recycling occurred with PAP oxidation to p-quinone imine (PQI) at +290 mV followed by PQI reduction to PAP at -300 mV vs Ag/AgCl. Dual-electrode detection amplified the signal fourfold compared to single-electrode detection, and the recycling efficiency reached 87%. A calibration curve of PAP concentration vs anodic current was linear between 10(-4) and 10(-6)M. A signal from 1000 beads in a 20-microL drop was detectable and the immunoassay was complete within 10 min with a detection limit of 3.5x10(-15)mol mouse IgG.
Immunoassay, Time Factors, Microchemistry, Quinones, Aminophenols, beta-Galactosidase, Immunoenzyme Techniques, Mice, Immunoglobulin G, Calibration, Electrochemistry, Animals, Imines, Electrodes, Oxidation-Reduction
Immunoassay, Time Factors, Microchemistry, Quinones, Aminophenols, beta-Galactosidase, Immunoenzyme Techniques, Mice, Immunoglobulin G, Calibration, Electrochemistry, Animals, Imines, Electrodes, Oxidation-Reduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 65 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
