
pmid: 32061348
Aquaporins (AQPs) are water channels proteins that facilitate water flux across cell membranes in response to osmotic gradients. Despite of the differences in the mammalian placentas, the conserved combination of AQPs expressed in placental and fetal membranes throughout gestation suggests that these proteins may be important in the regulation of fetal water homeostasis. Thus, AQPs may regulate the amniotic fluid volume and participate in the trans-placental transfer of water. Apart from their classical roles, recent studies have revealed that placental AQPs may also cooperate in cellular processes such as the migration and the apoptosis of the trophoblasts. Aquaglyceroporins can also participate in the energy metabolism and in the urea elimination across the placenta. Many factors including oxygen, hormones, acid-basis homeostasis, maternal dietary status, interaction with other transport proteins and osmotic stress are proposed to regulate their expression and function during gestation and alterations result in pathological pregnancies.
Placenta, Cell Membrane, Extraembryonic Membranes, Apoptosis, Aquaporins, Pregnancy, Animals, Homeostasis, Humans, Female
Placenta, Cell Membrane, Extraembryonic Membranes, Apoptosis, Aquaporins, Pregnancy, Animals, Homeostasis, Humans, Female
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
