Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/bs.ctd...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Germ cell reprogramming

Authors: Kazuki, Kurimoto; Mitinori, Saitou;

Germ cell reprogramming

Abstract

Germ cells undergo epigenome reprogramming for proper development of the next generation. The achievement of in vitro germ cell derivation from human and mouse pluripotent stem cells and further differentiation in a plane culture and in aggregation with gonadal somatic cells offers unprecedented opportunities for investigation of the germ cell development. Moreover, advances in low-input/single-cell genomics have enabled detailed investigation of epigenome dynamics during germ cell development. These technologies have advanced our knowledge of epigenome reprogramming during the specification and development of primordial germ cells, their sex differentiation, and gametogenesis. Key findings include details of chromatin remodeling and transcriptional regulation, progressive and comprehensive DNA demethylation, and tight links between DNA demethylation and histone marks during the development of primordial germ cells, acquisition of unique totipotent epigenome during oogenesis (e.g., broad H3K4me3 domains and low-level three-dimensional genomic organization), and unexpected organization of the sperm genome. Moreover, these studies suggest the importance of epigenome analyses for in-depth evaluations of in vitro gametogenesis.

Related Organizations
Keywords

Germ Cells, Animals, Gene Expression Regulation, Developmental, Humans, DNA Methylation, Cellular Reprogramming, Chromatin Assembly and Disassembly, Epigenesis, Genetic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!