Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/bs.apc...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Structure-function relationships in KDM7 histone demethylases

Authors: Shobhit S, Chaturvedi; Rajeev, Ramanan; Sodiq O, Waheed; Tatyana G, Karabencheva-Christova; Christo Z, Christov;

Structure-function relationships in KDM7 histone demethylases

Abstract

The demethylation of lysine residues of histone proteins is a key epigenetic mechanism in cells. The enzymes that catalyze these processes are called histone demethylases (KDMs). The largest family of KDMs is the Jumonji C (JmjC) domain-containing enzymes; these includes KDM2-7 subfamily of enzymes. The JmjC proteins are Fe(II) and 2-Oxoglutarate (2OG) - dependent dioxygenases that couple substrate oxidation to decarboxylation of 2OG to form succinate and CO2. The KDM7 subfamily of enzymes - PHF8 (KDM7B) and KIAA1718 (KDM7A) are human JmjC 2OG-dependent Nε-methyl lysine demethylases and are involved in demethylation of lysine residues in histones such as H3K27me2/1, H3K9me2/1 and H4K20me1. These enzymes are involved in multiple pathologic processes, including cancers and mental retardation. In this chapter, we present the current state of the art in the structural, biochemical and computational studies of KDM7 enzymes.

Related Organizations
Keywords

Models, Molecular, Jumonji Domain-Containing Histone Demethylases, Structure-Activity Relationship, Protein Conformation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!