Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/bs.adg...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evolving Centromeres and Kinetochores

Authors: Steven Friedman; Michael Freitag;

Evolving Centromeres and Kinetochores

Abstract

The genetic material, contained on chromosomes, is often described as the "blueprint for life." During nuclear division, the chromosomes are pulled into each of the two daughter nuclei by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units must link the chromosomes to the microtubules, signal to the cell when the attachment is made so that division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. To perform each of these functions, kinetochores are large protein complexes, approximately 5MDa in size, and they contain at least 45 unique proteins. Many of the central components in the kinetochore are well conserved, yielding a common core of proteins forming consistent structures. However, many of the peripheral subcomplexes vary between different taxonomic groups, including changes in primary sequence and gain or loss of whole proteins. It is still unclear how significant these changes are, and answers to this question may provide insights into adaptation to specific lifestyles or progression of disease that involve chromosome instability.

Related Organizations
Keywords

Centromere, Fungi, Mitosis, Spindle Apparatus, Plants, Microtubules, Chromosomes, Evolution, Molecular, Chromosome Segregation, Animals, Chromosomes, Human, Humans, Kinetochores

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!