Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/bs.acr...
Part of book or chapter of book . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reductive stress in cancer

Authors: Leilei Zhang; Kenneth D. Tew;

Reductive stress in cancer

Abstract

Reductive stress is defined as a condition characterized by excess accumulation of reducing equivalents (e.g., NADH, NADPH, GSH), surpassing the activity of endogenous oxidoreductases. Excessive reducing equivalents can perturb cell signaling pathways, change the formation of disulfide bonding in proteins, disturb mitochondrial homeostasis or decrease metabolism. Reductive stress is influenced by cellular antioxidant load, its flux and a subverted homeostasis that paradoxically can result in excess ROS induction. Balanced reducing equivalents and antioxidant enzymes that contribute to reductive stress can be regulated by Nrf2, typically considered as an oxidative stress induced transcription factor. Cancer cells may coordinate distinct pools of redox couples under reductive stress and these may link to biological consequences from both molecular and translational standpoints. In cancer, there is recent interest in understanding how selective induction of reductive stress may influence therapeutic management and disease progression.

Related Organizations
Keywords

Oxidative Stress, Neoplasms, Humans, Oxidation-Reduction, Antioxidants, Mitochondria

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?