Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational fluid dynamics

Authors: Y. Nakayama; R.F. Boucher;

Computational fluid dynamics

Abstract

Publisher Summary This chapter focuses on computational fluid dynamics. For the flow of an incompressible fluid, if the Navier–Stokes equations of motion and the continuity equation are solved simultaneously under given boundary conditions, an exact solution should be obtained. However, because the Navier–Stokes equations are non-linear, it is difficult to solve them analytically. Nevertheless, approximate solutions are obtainable, for example, by omitting the inertia terms for a flow whose Re is small, such as slow flow around a sphere. For a compressible fluid, it is further necessary to solve the equation of state and the energy equation simultaneously with respect to the thermodynamical properties. Thus, multi-dimensional shockwave problems can only be solved by relying upon numerical solution methods. With the progress of computers, it has become popular to solve flow problems numerically. By such means it is possible to follow a kaleidoscopic change of flow. This field of engineering is referred to as numerical fluid mechanics or computational fluid dynamics. It can be roughly classified into four approaches: the finite difference method, the finite volume method, the finite element method, and the boundary element method. The chapter provides a discussion on these methods.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!