Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cytokines and Bone Remodeling

Authors: Julie A. Sterling; Gregory R. Mundy; Babatunde O. Oyajobi; Gloria Gutierrez; Ming Zhao; Susan S. Padalecki; Florent Elefteriou;

Cytokines and Bone Remodeling

Abstract

Publisher Summary Bone is continuously remodeled in normal individuals and this is achieved via a finely regulated balance between the processes of bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. This bone remodeling is regulated, in part, by local factors including cytokines generated in the bone microenvironment. The purpose of this chapter is to summarize what is currently known about the role of cytokines and their receptors in bone remodeling. Recent advances in molecular biological techniques have meant that most of the biological activities ascribed to cytokines have now been associated with specific molecules, and their receptors identified and molecularly cloned. Several cytokines and their cognate receptors have been shown to be expressed by bone cells, marrow cells, or accessory cells in the bone microenvironment. Moreover, studies using knockout and transgenic mice have increased the understanding of the complex signal transduction mechanisms utilized by cytokines and are opening up new and exciting areas of study. Cytokines tend to be pleiotropic and multifactorial, and may have overlapping and seemingly redundant biological effects. Some of this redundancy is apparent in the receptor mechanisms and signal transduction pathways used by groups of cytokines. Classic examples that illustrate this vividly are the various cytokines belonging to the interleukin (IL)-6 family, such as IL-6, leukemia inhibitory factor, oncostatin-M, and IL-11, which utilize a common signal transduction protein known as gp130. These cytokines bind to distinct membrane-associated receptors, which form hetero- or homo-dimers upon binding to the ligand. Further, there is now a body of data derived from in vivo studies in animals which show that over- or under-production of certain cytokines cause profound effects on bone. These fundamental observations have the potential of not only increasing the understanding of the pathophysiology of osteoporosis, but also leading to new and better forms of therapy using these molecules as targets for drug discovery programs.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Average
Top 10%
Top 1%
Related to Research communities
Cancer Research
Upload OA version
Are you the author? Do you have the OA version of this publication?