Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Infection

Authors: Natalya Nagornaya; M. Judith Donovan Post; Gaurav Saigal;
Abstract

Imaging is useful in the diagnosis and management of infections of the central nervous system. Typically, imaging findings at the outset of the disease are subtle and nonspecific, but they often evolve to more definite imaging patterns in a few days, with less rapidity than for stroke but faster than for neoplastic lesions. This timing is similar to that of noninfectious inflammatory brain disease, such as multiple sclerosis. Fortunately, imaging patterns help to distinguish the two kinds of processes. Other than for sarcoidosis, the meninges are seldom involved in noninfectious inflammation; in contrast, many infectious processes involve the meninges, which then enhance with contrast on computed tomography (CT) or magnetic resonance imaging (MRI). However, brain infection causes a vast array of imaging patterns. Although CT is useful when hemorrhage or calcification is suspected or bony detail needs to be determined, MRI is the imaging modality of choice in the investigation of intracranial infections. Imaging sequences such as diffusion-weighted imaging help in accurately depicting the location and characterizing pyogenic infections and are particularly useful in differentiating bacterial infections from other etiologies. Susceptibility-weighted imaging is extremely useful for the detection of hemorrhage. Although MR spectroscopy findings can frequently be nonspecific, certain conditions such as bacterial abscesses show a relatively specific spectral pattern and are useful in diagnosing and constituting immediate therapy. In this chapter we review first the imaging patterns associated with involvement of various brain structures, such as the epidural and subdural spaces, the meninges, the brain parenchyma, and the ventricles. Involvement of these regions is illustrated with bacterial infections. Next we illustrate the patterns associated with viral and prion diseases, followed by mycobacterial and fungal infections, to conclude with a review of imaging findings in parasitic infections.

Related Organizations
Keywords

Central Nervous System, Brain Abscess, Humans, Tomography, X-Ray Computed, Magnetic Resonance Imaging

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!