Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.1...arrow_drop_down
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 1988 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1016/0076-6...
Part of book or chapter of book . 1986 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isolation and Characterization of Plant Cell Walls and Cell Wall Components

Authors: Thomas T. Stevenson; Michael R. McNeil; Alan G. Darvill; William S. York; Peter Albersheim;

Isolation and Characterization of Plant Cell Walls and Cell Wall Components

Abstract

Publisher Summary This chapter describes the methods used for isolating and characterizing the noncellulosic polysaccharides of the primary walls of suspension-cultured sycamore cells. These procedures are applicable to the study of other types of cell walls. Cell walls form the basic structural framework of the plant, defining the shape and size of plant cells and tissues. Cell walls are classified as either primary or secondary, depending upon their mechanical properties and chemical composition. The primary cell wall is a mechanically dynamic structure encasing the cell during the period of rapid expansion that follows cell division. The secondary cell wall is, relative to the primary cell wall, a mechanically static structure that determines the shape and size of the mature cell. The chapter presents the experiments for the isolation of plant cell walls and the isolation of polysaccharides from cell walls and from extracellular polysaccharides of suspension-cultured plant cells and the chemical methods used for characterizing polysaccharides.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 1%
Top 0.1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!