Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://kops.uni-kon...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://kops.uni-konstanz.de/b...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Contractile Vacuole Complex—Its Expanding Protein Inventory

Authors: Plattner, Helmut;

Contractile Vacuole Complex—Its Expanding Protein Inventory

Abstract

The contractile vacuole complex (CVC) of some protists serves for the osmotic equilibration of water and ions, notably Ca(2+), by chemiosmotic exploitation of a H(+) gradient generated by the organelle-resident V-type H(+)-ATPase. Ca(2+) is mostly extruded, but there is also some reflux into the cytosol via Ca(2+)-release channels. Most data available are from Dictyostelium and Paramecium. In Paramecium, the major parts of CVC contain several v-/R-SNARE (synaptobrevins) and t-/Q-SNARE (syntaxins) proteins. This is complemented by Rab-type GTPases (shown in Tetrahymena) and exocyst components (Chlamydomonas). All this reflects a multitude of membrane interactions and fusion processes. Ca(2+)/H(+) and other exchangers are to be postulated, as are aquaporins and mechanosensitive Ca(2+) channels. From the complexity of the organelle, many more proteins may be expected. For instance, the pore is endowed with its own set of proteins. We may now envisage the regulation of membrane dynamics (reversible tubulation) and the epigenetic control of organelle shape, size and positioning. New aspects about organelle function and biogenesis are sketched in Section 7. The manifold regulators currently known from CVC suggest the cooperation of widely different mechanisms to maintain its dynamic function and to drive its biogenesis.

Country
Germany
Related Organizations
Keywords

info:eu-repo/classification/ddc/570, Vacuoles, Humans, Proteins, Calcium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
Green
Related to Research communities