Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Osteoclasts

Authors: F. Patrick Ross;

Osteoclasts

Abstract

Publisher Summary One of the integral cell types contributes significantly to regulation of bone mass; osteoblasts, of mesenchymal origin, are transducers of numerous endocrine and paracrine signals. Separately they secrete and calcify the unique bone matrix, which is degraded by myeloid derived osteoclasts. The mechanism by which osteoclasts resorb bone is described in this chapter. The osteoclast, the only cell capable of bone degradation, is of hematopoietic origin. Many experiments have affirmed the original finding, including many examples of bone marrow rescue replicative of the early work, plus studies in which mice lacking the early myeloid-specific gene PU.1 fail to develop osteoclasts. While it is clear that hematopoietic stem cells (HSCs) are osteoclast precursors, the initial steps in lineage development have not been defined completely. Thus, the earliest precursor that can be isolated and manipulated readily in vitro is the bone marrow macrophage (BMM) or its splenic counterpart, cells which arise from HSCs by incompletely understood signaling pathways. It is possible now to generate sufficient mature murine osteoclast-like cells to perform a wide range of cell biology studies by exposing BMMs to just two cytokines, M-CSF and RANKL, whose receptors are c-Fms and RANK, respectively.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!