Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Urology Repo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Urology Reports
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tissue Engineering in Urology

Authors: Anthony Atala;

Tissue Engineering in Urology

Abstract

Congenital abnormalities, cancer, trauma, infection, inflammation, iatrogenic injuries, and other conditions may lead to genitourinary organ damage or loss, requiring eventual reconstruction. Tissue engineering follows the principles of cell transplantation, materials science, and engineering toward the development of biological substitutes that would restore and maintain normal function. Tissue engineering may involve matrices alone, wherein the body's natural ability to regenerate is used to orient or direct new tissue growth, or the use of matrices with cells. Both synthetic (polyglycolic acid polymer scaffolds alone and with co-polymers of poly-1-lactic acid and poly-DL-lactide-coglycolide) and natural biodegradable materials (processed collagen derived from allogeneic donor bladder submucosa and intestinal submucosa) have been used, either alone or as cell delivery vehicles. Tissue engineering has been applied experimentally for the reconstitution of several urologic tissues and organs, including bladder, ureter, urethra, kidney, testis, and genitalia. Fetal applications have also been explored. Recently, several tissue engineering technologies have been used clinically, including the use of cells as bulking agents for the treatment of vesicoureteral reflux and incontinence, urethral replacement, and bladder reconstruction. Recent progress suggests that engineered urologic tissues may have clinical applicability in the future.

Keywords

Urologic Diseases, Tissue Engineering, Urology, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Average
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?