
Tetanus toxin potently and almost irreversibly inhibits the release of neurotransmitters from nerve terminals. The toxin binds to and activates transglutaminase, a Ca(2+)-dependent enzyme that can form stable crosslinks between substrate proteins. Transglutaminase is present in nerve terminals and recognizes synapsin I, an abundant synaptic vesicle phosphoprotein involved in neurotransmission, as an excellent substrate. The neuroparalytic action of tetanus toxin might be due, at least in part, to the stimulation of synaptic transglutaminase and the consequent crosslinking of synapsin I.
Neurotransmitter Agents, Transglutaminases, Tetanus Toxin, Aplysia, Animals, Synaptic Vesicles, Synapsins
Neurotransmitter Agents, Transglutaminases, Tetanus Toxin, Aplysia, Animals, Synaptic Vesicles, Synapsins
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
