
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 7888773
Reinforcement learning refers to improving performance through trial-and-error. Despite recent progress in developing artificial learning systems, including new learning methods for artificial neural networks, most of these systems learn under the tutelage of a knowledgeable 'teacher' able to tell them how to respond to a set of training stimuli. Learning under these conditions is not adequate, however, when it is costly, or even impossible, to obtain this kind of training information. Reinforcement learning is attracting increasing attention in computer science and engineering because it can be used by autonomous systems to learn from their experiences instead of from knowledgeable teachers, and it is attracting attention in computational neuroscience because it is consonant with biological principles. Recent research has improved the efficiency of reinforcement learning and has provided some striking examples of its capabilities.
Neural Conduction, Neurosciences, Animals, Humans, Learning, Neural Networks, Computer, Reinforcement, Psychology
Neural Conduction, Neurosciences, Animals, Humans, Learning, Neural Networks, Computer, Reinforcement, Psychology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 100 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
