Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in B...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Biotechnology
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Engineering membrane proteins

Authors: Matti Saraste; Jean-Luc Popot;

Engineering membrane proteins

Abstract

Much of the research on integral membrane proteins mirrors that on soluble proteins; however, membrane protein engineering also has its own ends and means, many of which take advantage of the peculiar situation of membrane proteins, whose chains are distributed between one lipidic and two aqueous phases. Extramembrane loops have been shortened, cut, or elongated with segments forming proteolytic cleavage sites, foreign epitopes, extra transmembrane segments, or even whole proteins, with the aim of facilitating purification, biochemical/biophysical studies, or crystallogenesis. Transmembrane alpha-helices have been deleted, duplicated, exchanged, transported into a foreign context or replaced with synthetic peptides, in order to both understand their integration into, and assembly in, the membrane and unravel their functional role. Insertion of cysteine residues has been the basis for a great diversity of experiments, ranging from the exploration of secondary, tertiary and quaternary structures of the transmembrane region to the creation of anchoring points for reporter molecules. Chemical engineering--the synthesis of protein fragments or even of whole proteins--offers particularly exciting new prospects, given the small size of folding domains in alpha-helical membrane proteins. Membrane protein engineering is rapidly developing its own agenda of questions and tool chest of techniques.

Keywords

Evolution, Molecular, Protein Folding, Protein Conformation, Bacteriorhodopsins, Recombinant Fusion Proteins, Membrane Proteins, Cysteine, Protein Engineering, Lipids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!