Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American College of Cardiology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American College of Cardiology
Article . 1996
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American College of Cardiology
Article . 1996 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiple anterograde atrioventricular node pathways in patients with atrioventricular node reentrant tachycardia

Authors: Shih-Ann Chen; Shih-Ann Chen; Ching Tai Tai; Chuen Wang Chiou; Chuen Wang Chiou; Shih Huang Lee; Chern En Chiang; +9 Authors

Multiple anterograde atrioventricular node pathways in patients with atrioventricular node reentrant tachycardia

Abstract

This study sought to investigate electrophysiologic characteristics and possible anatomic sites of multiple anterograde slow atrioventricular (AV) node pathways and to compare these findings with those in dual anterograde AV node pathways.Although multiple anterograde AV node pathways have been demonstrated by the presence of multiple discontinuities in the AV node conduction curve, the role of these pathways in the initiation and maintenance of AV node reentrant tachycardia (AVNRT) is still unclear, and possible anatomic sites of these pathways have not been reported.This study included 500 consecutive patients with AVNRT who underwent electrophysiologic study and radiofrequency ablation. Twenty-six patients (5.2%) with triple or more anterograde AV node pathways were designated as Group I (16 female, 10 male, mean age 48 +/- 14 years), and the other 474 patients (including 451 with and 23 without dual anterograde AV node pathways) were designated as Group II (257 female, 217 male; mean age 52 +/- 16 years).Of the 21 patients with triple anterograde AV node pathways, AVNRT was initiated through the first slow pathway only in 3, through the second slow pathway only in 8 and through the two slow pathways in 9. Of the five patients with quadruple anterograde AV node pathways, AVNRT was initiated through all three anterograde slow pathways in three and through the two slower pathways (the second and third slow pathways) in two. After radiofrequency catheter ablation, no patient had inducible AVNRT. Eleven patients (42.3%) in Group I had multiple anterograde slow pathways eliminated simultaneously at a single ablation site. Eight patients (30.7%) had these slow pathways eliminated at different ablation sites; the slow pathways with a longer conduction time were ablated more posteriorly in the Koch's triangle than those with a shorter conduction time. The remaining seven patients (27%) had a residual slow pathway after delivery of radiofrequency energy at a single or different ablation sites. The patients in Group I had a longer tachycardia cycle length, poorer retrograde conduction properties and a higher incidence of multiple types of AVNRT than those in Group II.Multiple anterograde AV node pathways are not rare in patients with AVNRT. However, not all of the anterograde slow pathways were involved in the initiation and maintenance of tachycardia. Radiofrequency catheter ablation was safe and effective in eliminating critical slow pathways to cure AVNRT.

Keywords

Adult, Male, Cardiac Pacing, Artificial, Middle Aged, Electrophysiology, Atrioventricular Node, Catheter Ablation, Humans, Tachycardia, Atrioventricular Nodal Reentry, Female, Cardiology and Cardiovascular Medicine, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
hybrid