Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Physics Barrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Physics B
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Physics B
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 1995
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CP violation in multi-Higgs supersymmetric models

Authors: Manuel Masip; Manuel Masip; Andrija Rasin;

CP violation in multi-Higgs supersymmetric models

Abstract

We consider supersymmetric extensions of the standard model with two pairs of Higgs doublets. We study the possibility of spontaneous $CP$ violation in these scenarios and present a model where the origin of $CP$ violation is soft, with all the complex phases in the Lagrangian derived from complex masses and vacuum expectation values (VEVs) of the Higgs fields. The main ingredient of the model is an approximate global symmetry, which determines the order of magnitude of Yukawa couplings and scalar VEVs. We assume that the terms violating this symmetry are suppressed by powers of the small parameter $��_{PQ}=O(m_b/m_t)$. The tree-level flavor changing interactions are small due to a combination of this global symmetry and a flavor symmetry, but they can be the dominant source of $CP$ violation. All $CP$-violating effects occur at order $��_{PQ}^2$ as the result of exchange of {\it almost}-decoupled extra Higgs bosons and/or through the usual mechanisms with an {\it almost}-real CKM matrix. On dimensional grounds, the model gives $��_K\approx ��_{PQ}^2$ and predicts for the neutron electric dipole moment (and possibly also for $��'_K$) a suppression of order $��_{PQ}^2$ with respect to the values obtained in standard and minimal supersymmetric scenarios. The predicted $CP$ asymmetries in $B$ decays are generically too small to be seen in the near future. The mass of the lightest neutral scalar, the strong $CP$ problem, and possible contributions to the $Z$ decay into $b$ quarks (the $R_b$ puzzle) are also briefly addressed in the framework of this model.

Latex, 31 pages including 6 figures which are a part of the Latex file

Keywords

High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
Green
gold