Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hearing Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hearing Research
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Hearing Research
Article . 1996
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combination-sensitive neurons in the inferior colliculus

Authors: David H. Mittmann; Jeffrey J. Wenstrup;

Combination-sensitive neurons in the inferior colliculus

Abstract

We examined whether neurons in the inferior colliculus of the mustached bat (Pteronotus parnellii) are combination sensitive, responding to both low- and high-frequency components of the bat's sonar signal. These neurons, previously reported in the thalamus and cortex, analyze sonar target features including distance. Of 82 single units and 36 multiple units from the 58-112 kHz representations of the inferior colliculus, most (86%) displayed sensitivity to low-frequency sounds that was tuned in the range of the fundamental biosonar component (24-31 kHz). All histologically localized units were in the central nucleus of the inferior colliculus (ICC). There were two major types of combination-sensitive influences. Many neurons were facilitated by low-frequency sounds and selective for particular delays between the low- and high-frequency components. In other neurons, the low-frequency signal was inhibitory if presented simultaneously or a few milliseconds prior to the high-frequency signal. The results indicate that mechanisms creating specialized frequency comparisons and delay sensitivity in combination-sensitive neurons operate at the ICC or below. Since combination sensitivity or multipeaked tuning curves occur in the auditory systems of many species, ICC neurons in these animals may also respond to species-specific frequency combinations.

Related Organizations
Keywords

Auditory Cortex, Neurons, Acoustic Stimulation, Ultrasonography, Doppler, Transcranial, Chiroptera, Animals, Sound Localization, Inferior Colliculi

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!