Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hearing Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hearing Research
Article . 1992 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Hearing Research
Article . 1992
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-tone suppression in inner hair cell responses: Correlates of rate suppression in the auditory nerve

Authors: Peter Dallos; Mary Ann Cheatham;

Two-tone suppression in inner hair cell responses: Correlates of rate suppression in the auditory nerve

Abstract

Inner hair cell (IHC) recordings were made from second turn of the guinea pig cochlea where characteristic frequencies are approximately 4000 Hz. In order to compare IHC responses with rate suppression measured in the auditory nerve, suppressors were introduced that produced little or no response in the hair cell. The effects of a variable-frequency suppressor on a constant-frequency probe, placed near characteristic frequency, were also investigated since this paradigm is commonly used in single unit experiments. Resulting magnitude changes were measured in the fundamental component of the ac receptor potential and/or in the total dc produced in the region of temporal overlap between the two stimulus inputs. This latter component is especially important when considering how changes in IHC responses relate to decreases in discharge rate in single auditory nerve fibers. Since the ac receptor potential is filtered by the hair cell's basolateral membrane, the dc component probably controls transmitter release at the characteristic frequency of these second-turn IHCs. Based on results from these and previous experiments, a proposal is advanced to explain the evolution of two-tone suppression in the peripheral auditory system. The paper also discusses the use of excitatory versus non-excitatory suppressors and includes a description of two-tone suppression areas at the mechanical, IHC and single unit levels. The explanation of low-side suppression areas is of special interest since hitherto they have been difficult to model (Kim, 1985).

Related Organizations
Keywords

Electrophysiology, Hair Cells, Auditory, Inner, Acoustic Stimulation, Guinea Pigs, Evoked Potentials, Auditory, Animals, Vestibulocochlear Nerve

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?