Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hearing Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hearing Research
Article . 1990 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Hearing Research
Article . 1990
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Apical hair cells and hearing

Authors: Prosen, Cynthia A.; Moody, David B.; Stebbins, William C.; Smith, David W.; Sommers, Mitchell S.; Brown, J. Nadine; Altschuler, Richard A.; +1 Authors

Apical hair cells and hearing

Abstract

This study assessed the contribution of the apical hair cells to hearing. Guinea pigs, chinchillas and monkeys were behaviorally trained using positive reinforcement to respond to pure-tone stimuli. When a stable audiogram had been determined, each subject received one of three experimental treatments: ototoxic drug administration, low-frequency noise exposure, or the application of a cryoprobe to the bony wall of the cochlear apex. After post-treatment audiograms stabilized, subjects were euthanized and the percentage of hair cells remaining was assessed by light microscopy. Results indicate that a redundancy of encoding mechanisms exist in the mammalian cochlea for low-frequency stimuli. They also suggest that a very small percentage of apical hair cells are sufficient for some low-frequency hearing. Finally, data from this and other studies suggest that the low-frequency threshold shift caused by the loss of a certain percentage of apical hair cells is less pronounced than the high-frequency threshold shift caused by the loss of a comparable percentage of basal hair cells. These data agree with anatomical and electrophysiological evidence that functional as well as anatomical differences may exist between the apex and base of the cochlea.

Keywords

Hearing Loss, Sensorineural, Guinea Pigs, Auditory Threshold, Cercopithecidae, Cochlea, Hearing, Chinchilla, Health Sciences, Freezing, Hair Cells, Auditory, Animals, Audiometry, Pure-Tone, Noise, Perceptual Masking

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!