Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hearing Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hearing Research
Article . 1980 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Hearing Research
Article . 1980
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transmission delay of phase-locked cells in the medial geniculate body

Authors: A. Toros; F. de Ribaupierre; Eric M. Rouiller; Y. de Ribaupierre;

Transmission delay of phase-locked cells in the medial geniculate body

Abstract

Over 4000 single unit recordings were obtained from the medial geniculate body (MGB) of nitrous oxide anaesthetized cats. Out of 1600 cells sensitive to tone bursts below 4 kHz, 10% were responding in a sustained manner. From these, 121 were tested for phase-locked responses. The general characteristics of these units have been described in a previous report. The central tendency of the discharges distribution within the period or mean phase angle was studied for many frequencies in 24 phase-locked units. For each of them, the mean phase angle shifts linearly with the frequency. The slope of these phase versus frequency lines is an accurate measure of the transmission delay from the cochlea to the MGB. This delay is a function of the unit's characteristic frequency and shows that the time spread introduced by the cochlea between the high and low frequency components of an acoustic signal is preserved up to the MGB. Subtracting the cochlear delay from this overall delay, the neural delay from the eighth nerve to the MGB was found to be 6.4 ms for neurons having a CF above 300 Hz; it was greater by 3 ms for cells with a CF below that frequency.

Related Organizations
Keywords

Auditory Pathways, Acoustic Stimulation, Cats, Animals, Geniculate Bodies, Vestibulocochlear Nerve, Synaptic Transmission, Cochlea

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!